

Welcome to HDLController’s documentation!

HDLController is an HDLC controller written in Python and based on the
python4yahdlc [https://github.com/SkypLabs/python4yahdlc] Python module to
encode and decode the HDLC frames.

Table of Contents

	Overview

	Installation
	From PyPI (recommanded)

	From sources

	Usage

	Modules
	HDLController
	HDLController
	HDLController.Receiver
	HDLController.Receiver.join()

	HDLController.Receiver.run()

	HDLController.Sender
	HDLController.Sender.ack_received()

	HDLController.Sender.join()

	HDLController.Sender.nack_received()

	HDLController.Sender.run()

	HDLController.get_data()

	HDLController.get_senders_number()

	HDLController.send()

	HDLController.set_receive_callback()

	HDLController.set_send_callback()

	HDLController.set_sending_timeout()

	HDLController.start()

	HDLController.stop()

Overview

The HDLC controller supports the following frames:

	DATA (I-frame [https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#I-Frames_(user_data)] with Poll bit)

	ACK (S-frame Receive Ready [https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Receive_Ready_(RR)] with Final bit)

	NACK (S-frame Reject [https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Reject_(REJ)] with Final bit)

Each DATA frame must be positively or negatively acknowledged using
respectively an ACK or NACK frame. The highest sequence number is 7. As a
result, when sending a DATA frame, the expected acknowledgment sequence number
is seq_no + 1 % MAX_SEQ_NO with MAX_SEQ_NO = 8.

The number of DATA frames that can be sent before receiving the first
acknowledgment is determined by the window parameter of
HDLController. Its
default value is 3.

If the FCS [https://en.wikipedia.org/wiki/Frame_check_sequence] field of a received frame is not valid, an NACK will be sent back
with the same sequence number as the one of the corrupted frame to notify the
sender about it:

For each DATA frame sent, a timer is started. If the timer ends before
receiving any corresponding ACK and NACK frame, the DATA frame will be sent
again:

The default timer value is 2 seconds and can be changed using the
sending_timeout parameter of HDLController.

Installation

From PyPI (recommanded)

pip3 install --upgrade hdlcontroller

From sources

HDLController is packaged with Setuptools [https://setuptools.pypa.io/].

The default Git branch is develop. To install the latest stable version,
you need to clone the main branch.

git clone https://github.com/SkypLabs/python-hdlc-controller.git
cd python-hdlc-controller
pip3 install --upgrade .

Usage

To create a new HDLC controller instance, you need to call the
HDLController class
with two parameters:

hdlc_c = HDLController(read_func, write_func)

The first parameter is a function used to read from the serial bus while the
second parameter is a function used to write on it. For example, using the
pyserial [https://pythonhosted.org/pyserial/] module:

ser = serial.Serial('/dev/ttyACM0')

def read_serial():
 return ser.read(ser.in_waiting)

hdlc_c = HDLController(read_serial, ser.write)

To start the reception thread:

hdlc_c.start()

To send a new data frame:

hdlc_c.send('Hello world!')

And to get the next received data frame available in the
HDLController internal
queue:

data = hdlc_c.get_data()

The get_data()
method will block until a new data frame is available.

Finally, to stop all the HDLController threads:

hdlc_c.stop()

Modules

	HDLController

HDLController

	
class hdlcontroller.hdlcontroller.HDLController(read_func: Callable[[], bytes], write_func: Callable[[bytes], Optional[int]], sending_timeout: Timeout = 2.0, window: int = 3, frames_queue_size: int = 0, fcs_nack: bool = True)

	An HDLC controller based on python4yahdlc.

	
class Receiver(read_func: Callable[[], bytes], write_func: Callable[[bytes], Optional[int]], send_lock: allocate_lock, senders_list: Dict[SequenceNumber, Sender], frames_received: Queue, callback: Optional[Callable[[bytes], None]] = None, fcs_nack: bool = True)

	Thread used to receive HDLC frames.

	
join(timeout: Optional[Timeout] = None)

	Stops the current thread.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
class Sender(write_func: Callable[[bytes], Optional[int]], send_lock: allocate_lock, data: bytes, seq_no: SequenceNumber, timeout: Timeout = 2.0, callback: Optional[Callable[[bytes], None]] = None)

	Thread used to send HDLC frames.

	
ack_received() → None

	Informs the sender that the related ACK frame has been received.
As a consequence, the current thread is being stopped.

	
join(timeout: Optional[Timeout] = None) → None

	Stops the current thread.

	
nack_received() → None

	Informs the sender that an NACK frame has been received. As a
consequence, the data frame is being resent.

	
run() → None

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
get_data() → bytes

	Gets the next frame received.

This method will block until a new data frame is available.

	
get_senders_number() → int

	Returns the number of active senders.

	
send(data: bytes) → None

	Sends a new data frame.

This method will block until a new room is available for a new sender.
This limit is determined by the size of the window.

	
set_receive_callback(callback: Callable[[bytes], None]) → None

	Sets the receive callback function.

This method has to be called before starting the HDLC controller.

	
set_send_callback(callback: Callable[[bytes], None]) → None

	Sets the send callback function.

If the HDLC controller has already been started, the new callback
function will be taken into account for the next data frames to be
sent.

	
set_sending_timeout(sending_timeout: Timeout) → None

	Sets the sending timeout.

	
start() → None

	Starts HDLC controller’s threads.

	
stop() → None

	Stops HDLC controller’s threads.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hdlcontroller	

 	
 	
 hdlcontroller.hdlcontroller	

Index

 A
 | G
 | H
 | J
 | M
 | N
 | R
 | S

A

 	
 	ack_received() (hdlcontroller.hdlcontroller.HDLController.Sender method)

G

 	
 	get_data() (hdlcontroller.hdlcontroller.HDLController method)

 	
 	get_senders_number() (hdlcontroller.hdlcontroller.HDLController method)

H

 	
 	HDLController (class in hdlcontroller.hdlcontroller)

 	
 hdlcontroller.hdlcontroller

 	module

 	
 	HDLController.Receiver (class in hdlcontroller.hdlcontroller)

 	HDLController.Sender (class in hdlcontroller.hdlcontroller)

J

 	
 	join() (hdlcontroller.hdlcontroller.HDLController.Receiver method)

 	(hdlcontroller.hdlcontroller.HDLController.Sender method)

M

 	
 	
 module

 	hdlcontroller.hdlcontroller

N

 	
 	nack_received() (hdlcontroller.hdlcontroller.HDLController.Sender method)

R

 	
 	run() (hdlcontroller.hdlcontroller.HDLController.Receiver method)

 	(hdlcontroller.hdlcontroller.HDLController.Sender method)

S

 	
 	send() (hdlcontroller.hdlcontroller.HDLController method)

 	set_receive_callback() (hdlcontroller.hdlcontroller.HDLController method)

 	set_send_callback() (hdlcontroller.hdlcontroller.HDLController method)

 	
 	set_sending_timeout() (hdlcontroller.hdlcontroller.HDLController method)

 	start() (hdlcontroller.hdlcontroller.HDLController method)

 	stop() (hdlcontroller.hdlcontroller.HDLController method)

 nav.xhtml

 Table of Contents

 		
 Welcome to HDLController’s documentation!

 		
 Overview

 		
 Installation

 		
 From PyPI (recommanded)

 		
 From sources

 		
 Usage

 		
 Modules

 		
 HDLController

 		
 HDLController

_static/file.png

_static/minus.png

_static/plus.png

_images/seqdiag-045f563b21af36c2e83b02efbac8d42378bc2b90.png
DaTA [seq Yo = 11
B

DaTA [seq Yo = 21
B

ACK [seq w0 = 21
=R E

ACK [seq 1o = 31
= RIR

The expected AT frana’s sequence mmber 1
351+ 1% X sEoN0 = 2

oK of Bhe DATA frane’s sequence wurber 11y

oK of Bhe DATA frane’s sequence wurber 2 by

_images/seqdiag-20521ed02ef044e9738415d01ccaa826b6ace6d3.png
o ROK/ACK veceived before The end of 1

the tiner

-u
u

X

DRTA [5eq Yo
DRTA [5eq Yo

_images/seqdiag-ca1df2d8cfbaf90c128dd396ebcbf6ddb40ae19e.png
oATR [seq Yo = 11
oATR [seq Yo = 11

