
HDLController Documentation
Release 0.5.2

Paul-Emmanuel Raoul

Aug 21, 2023

TABLE OF CONTENTS

1 Overview 3

2 Installation 5
2.1 From PyPI (recommanded) . 5
2.2 From sources . 5

3 Usage 7

4 Modules 9
4.1 HDLController . 9

Python Module Index 11

Index 13

i

ii

HDLController Documentation, Release 0.5.2

HDLController is an HDLC controller written in Python and based on the python4yahdlc Python module to encode
and decode the HDLC frames.

TABLE OF CONTENTS 1

https://github.com/SkypLabs/python4yahdlc

HDLController Documentation, Release 0.5.2

2 TABLE OF CONTENTS

CHAPTER

ONE

OVERVIEW

The HDLC controller supports the following frames:

• DATA (I-frame with Poll bit)

• ACK (S-frame Receive Ready with Final bit)

• NACK (S-frame Reject with Final bit)

Each DATA frame must be positively or negatively acknowledged using respectively an ACK or NACK frame. The
highest sequence number is 7. As a result, when sending a DATA frame, the expected acknowledgment sequence
number is seq_no + 1 % MAX_SEQ_NO with MAX_SEQ_NO = 8.

The number of DATA frames that can be sent before receiving the first acknowledgment is determined by the window
parameter of HDLController. Its default value is 3.

3

https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#I-Frames_(user_data)
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Receive_Ready_(RR)
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Reject_(REJ)

HDLController Documentation, Release 0.5.2

If the FCS field of a received frame is not valid, an NACK will be sent back with the same sequence number as the one
of the corrupted frame to notify the sender about it:

For each DATA frame sent, a timer is started. If the timer ends before receiving any corresponding ACK and NACK
frame, the DATA frame will be sent again:

The default timer value is 2 seconds and can be changed using the sending_timeout parameter of HDLController.

4 Chapter 1. Overview

https://en.wikipedia.org/wiki/Frame_check_sequence

CHAPTER

TWO

INSTALLATION

2.1 From PyPI (recommanded)

pip3 install --upgrade hdlcontroller

2.2 From sources

HDLController is packaged with Setuptools.

The default Git branch is develop. To install the latest stable version, you need to clone the main branch.

git clone https://github.com/SkypLabs/python-hdlc-controller.git
cd python-hdlc-controller
pip3 install --upgrade .

5

https://setuptools.pypa.io/

HDLController Documentation, Release 0.5.2

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

To create a new HDLC controller instance, you need to call the HDLController class with two parameters:

hdlc_c = HDLController(read_func, write_func)

The first parameter is a function used to read from the serial bus while the second parameter is a function used to write
on it. For example, using the pyserial module:

ser = serial.Serial('/dev/ttyACM0')

def read_serial():
return ser.read(ser.in_waiting)

hdlc_c = HDLController(read_serial, ser.write)

To start the reception thread:

hdlc_c.start()

To send a new data frame:

hdlc_c.send('Hello world!')

And to get the next received data frame available in the HDLController internal queue:

data = hdlc_c.get_data()

The get_data() method will block until a new data frame is available.

Finally, to stop all the HDLController threads:

hdlc_c.stop()

7

https://pythonhosted.org/pyserial/

HDLController Documentation, Release 0.5.2

8 Chapter 3. Usage

CHAPTER

FOUR

MODULES

4.1 HDLController

class hdlcontroller.hdlcontroller.HDLController(read_func: Callable[[], bytes], write_func:
Callable[[bytes], Optional[int]], sending_timeout:
Timeout = 2.0, window: int = 3, frames_queue_size:
int = 0, fcs_nack: bool = True)

An HDLC controller based on python4yahdlc.

class Receiver(read_func: Callable[[], bytes], write_func: Callable[[bytes], Optional[int]], send_lock:
allocate_lock, senders_list: Dict[SequenceNumber, Sender], frames_received: Queue,
callback: Optional[Callable[[bytes], None]] = None, fcs_nack: bool = True)

Thread used to receive HDLC frames.

join(timeout: Optional[Timeout] = None)
Stops the current thread.

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

class Sender(write_func: Callable[[bytes], Optional[int]], send_lock: allocate_lock, data: bytes, seq_no:
SequenceNumber, timeout: Timeout = 2.0, callback: Optional[Callable[[bytes], None]] =
None)

Thread used to send HDLC frames.

ack_received()→ None
Informs the sender that the related ACK frame has been received. As a consequence, the current thread
is being stopped.

join(timeout: Optional[Timeout] = None)→ None
Stops the current thread.

nack_received()→ None
Informs the sender that an NACK frame has been received. As a consequence, the data frame is being
resent.

run()→ None
Method representing the thread’s activity.

9

HDLController Documentation, Release 0.5.2

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

get_data()→ bytes
Gets the next frame received.

This method will block until a new data frame is available.

get_senders_number()→ int
Returns the number of active senders.

send(data: bytes)→ None
Sends a new data frame.

This method will block until a new room is available for a new sender. This limit is determined by the size
of the window.

set_receive_callback(callback: Callable[[bytes], None])→ None
Sets the receive callback function.

This method has to be called before starting the HDLC controller.

set_send_callback(callback: Callable[[bytes], None])→ None
Sets the send callback function.

If the HDLC controller has already been started, the new callback function will be taken into account for
the next data frames to be sent.

set_sending_timeout(sending_timeout: Timeout)→ None
Sets the sending timeout.

start()→ None
Starts HDLC controller’s threads.

stop()→ None
Stops HDLC controller’s threads.

10 Chapter 4. Modules

PYTHON MODULE INDEX

h
hdlcontroller.hdlcontroller, 9

11

HDLController Documentation, Release 0.5.2

12 Python Module Index

INDEX

A
ack_received() (hdlcon-

troller.hdlcontroller.HDLController.Sender
method), 9

G
get_data() (hdlcontroller.hdlcontroller.HDLController

method), 10
get_senders_number() (hdlcon-

troller.hdlcontroller.HDLController method),
10

H
HDLController (class in hdlcontroller.hdlcontroller), 9
hdlcontroller.hdlcontroller

module, 9
HDLController.Receiver (class in hdlcon-

troller.hdlcontroller), 9
HDLController.Sender (class in hdlcon-

troller.hdlcontroller), 9

J
join() (hdlcontroller.hdlcontroller.HDLController.Receiver

method), 9
join() (hdlcontroller.hdlcontroller.HDLController.Sender

method), 9

M
module
hdlcontroller.hdlcontroller, 9

N
nack_received() (hdlcon-

troller.hdlcontroller.HDLController.Sender
method), 9

R
run() (hdlcontroller.hdlcontroller.HDLController.Receiver

method), 9
run() (hdlcontroller.hdlcontroller.HDLController.Sender

method), 9

S
send() (hdlcontroller.hdlcontroller.HDLController

method), 10
set_receive_callback() (hdlcon-

troller.hdlcontroller.HDLController method),
10

set_send_callback() (hdlcon-
troller.hdlcontroller.HDLController method),
10

set_sending_timeout() (hdlcon-
troller.hdlcontroller.HDLController method),
10

start() (hdlcontroller.hdlcontroller.HDLController
method), 10

stop() (hdlcontroller.hdlcontroller.HDLController
method), 10

13

	Overview
	Installation
	From PyPI (recommanded)
	From sources

	Usage
	Modules
	HDLController

	Python Module Index
	Index

